3.237 \(\int \frac{\sqrt{a x^2+b x^3}}{x^3} \, dx\)

Optimal. Leaf size=52 \[ -\frac{\sqrt{a x^2+b x^3}}{x^2}-\frac{b \tanh ^{-1}\left (\frac{\sqrt{a} x}{\sqrt{a x^2+b x^3}}\right )}{\sqrt{a}} \]

[Out]

-(Sqrt[a*x^2 + b*x^3]/x^2) - (b*ArcTanh[(Sqrt[a]*x)/Sqrt[a*x^2 + b*x^3]])/Sqrt[a]

________________________________________________________________________________________

Rubi [A]  time = 0.0519346, antiderivative size = 52, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {2020, 2008, 206} \[ -\frac{\sqrt{a x^2+b x^3}}{x^2}-\frac{b \tanh ^{-1}\left (\frac{\sqrt{a} x}{\sqrt{a x^2+b x^3}}\right )}{\sqrt{a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*x^2 + b*x^3]/x^3,x]

[Out]

-(Sqrt[a*x^2 + b*x^3]/x^2) - (b*ArcTanh[(Sqrt[a]*x)/Sqrt[a*x^2 + b*x^3]])/Sqrt[a]

Rule 2020

Int[((c_.)*(x_))^(m_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b*
x^n)^p)/(c*(m + j*p + 1)), x] - Dist[(b*p*(n - j))/(c^n*(m + j*p + 1)), Int[(c*x)^(m + n)*(a*x^j + b*x^n)^(p -
 1), x], x] /; FreeQ[{a, b, c}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[p
, 0] && LtQ[m + j*p + 1, 0]

Rule 2008

Int[1/Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[2/(2 - n), Subst[Int[1/(1 - a*x^2), x], x, x/Sq
rt[a*x^2 + b*x^n]], x] /; FreeQ[{a, b, n}, x] && NeQ[n, 2]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{a x^2+b x^3}}{x^3} \, dx &=-\frac{\sqrt{a x^2+b x^3}}{x^2}+\frac{1}{2} b \int \frac{1}{\sqrt{a x^2+b x^3}} \, dx\\ &=-\frac{\sqrt{a x^2+b x^3}}{x^2}-b \operatorname{Subst}\left (\int \frac{1}{1-a x^2} \, dx,x,\frac{x}{\sqrt{a x^2+b x^3}}\right )\\ &=-\frac{\sqrt{a x^2+b x^3}}{x^2}-\frac{b \tanh ^{-1}\left (\frac{\sqrt{a} x}{\sqrt{a x^2+b x^3}}\right )}{\sqrt{a}}\\ \end{align*}

Mathematica [A]  time = 0.0360123, size = 48, normalized size = 0.92 \[ -\frac{b x \sqrt{\frac{b x}{a}+1} \tanh ^{-1}\left (\sqrt{\frac{b x}{a}+1}\right )+a+b x}{\sqrt{x^2 (a+b x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*x^2 + b*x^3]/x^3,x]

[Out]

-((a + b*x + b*x*Sqrt[1 + (b*x)/a]*ArcTanh[Sqrt[1 + (b*x)/a]])/Sqrt[x^2*(a + b*x)])

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 56, normalized size = 1.1 \begin{align*} -{\frac{1}{{x}^{2}}\sqrt{b{x}^{3}+a{x}^{2}} \left ({\it Artanh} \left ({\sqrt{bx+a}{\frac{1}{\sqrt{a}}}} \right ) bx+\sqrt{bx+a}\sqrt{a} \right ){\frac{1}{\sqrt{bx+a}}}{\frac{1}{\sqrt{a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^3+a*x^2)^(1/2)/x^3,x)

[Out]

-(b*x^3+a*x^2)^(1/2)*(arctanh((b*x+a)^(1/2)/a^(1/2))*b*x+(b*x+a)^(1/2)*a^(1/2))/x^2/(b*x+a)^(1/2)/a^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{b x^{3} + a x^{2}}}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x^2)^(1/2)/x^3,x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^3 + a*x^2)/x^3, x)

________________________________________________________________________________________

Fricas [A]  time = 0.869586, size = 282, normalized size = 5.42 \begin{align*} \left [\frac{\sqrt{a} b x^{2} \log \left (\frac{b x^{2} + 2 \, a x - 2 \, \sqrt{b x^{3} + a x^{2}} \sqrt{a}}{x^{2}}\right ) - 2 \, \sqrt{b x^{3} + a x^{2}} a}{2 \, a x^{2}}, \frac{\sqrt{-a} b x^{2} \arctan \left (\frac{\sqrt{b x^{3} + a x^{2}} \sqrt{-a}}{a x}\right ) - \sqrt{b x^{3} + a x^{2}} a}{a x^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x^2)^(1/2)/x^3,x, algorithm="fricas")

[Out]

[1/2*(sqrt(a)*b*x^2*log((b*x^2 + 2*a*x - 2*sqrt(b*x^3 + a*x^2)*sqrt(a))/x^2) - 2*sqrt(b*x^3 + a*x^2)*a)/(a*x^2
), (sqrt(-a)*b*x^2*arctan(sqrt(b*x^3 + a*x^2)*sqrt(-a)/(a*x)) - sqrt(b*x^3 + a*x^2)*a)/(a*x^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x^{2} \left (a + b x\right )}}{x^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**3+a*x**2)**(1/2)/x**3,x)

[Out]

Integral(sqrt(x**2*(a + b*x))/x**3, x)

________________________________________________________________________________________

Giac [A]  time = 1.20562, size = 58, normalized size = 1.12 \begin{align*} \frac{{\left (\frac{b^{2} \arctan \left (\frac{\sqrt{b x + a}}{\sqrt{-a}}\right )}{\sqrt{-a}} - \frac{\sqrt{b x + a} b}{x}\right )} \mathrm{sgn}\left (x\right )}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x^2)^(1/2)/x^3,x, algorithm="giac")

[Out]

(b^2*arctan(sqrt(b*x + a)/sqrt(-a))/sqrt(-a) - sqrt(b*x + a)*b/x)*sgn(x)/b